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Abstract — Objective classification of heart sound signals 

can provide significant advancements in the screening of 

structural heart abnormalities. An algorithm, based on auditory 

filter models and probabilistic segmentation of heart cycle 

sequences, is proposed for classifying phonocardiogram (PCG) 

signals as normal or abnormal. It first involves segmentation of 

cardiac recordings into a sequence of four heart stages, namely 

S1, systole, S2 and diastole, using a hidden Markov model 

approach. Secondly, gammatone frequency cepstral coefficient 

(GFCC) features are extracted by applying the gammatone 

filterbank model to two independent binary classification 

problems: one with PCG segmentation, and one without 

segmentation. Weighted support vector machine models are 

trained to classify the PCG signals as normal vs. abnormal 

records using the GFCC features. The algorithm is trained and 

cross-validated using the 2016 PhysioNet Computing in 

Cardiology Challenge database of 3,240 PCG recordings. Based 

on 10-fold stratified cross-validation, the performance of the 

proposed “with segmentation” approach is determined to have 

a sensitivity of 90.3% and a specificity of 89.9%, while the 

“without segmentation” approach shows a comparable 

performance of 87.1% sensitivity and 88.5% specificity. Thus, 

the proposed algorithm demonstrates strong, clinically 

acceptable performance for automated screening of heart sound 

signals, and it can be a useful diagnostic tool in clinical practice 

to screen patients for structural and functional heart diseases. 

Keywords — Auditory model, gammatone filter bank, hidden 

Markov model, heart sound classification, phonocardiography. 

I. INTRODUCTION  

Heart auscultation, the technique of listening to the 
internal sounds of the heart using a stethoscope, is one of the 
fundamental diagnostic tools of the physician. The heart 
sounds, produced predominantly by the closure of the 
atrioventricular and semilunar heart valves, provide doctors 
with a glimpse into the structural and functional health of the 
heart and allow for an initial cardiac diagnosis. However, the 
traditional stethoscope as a spot check diagnostic tool is reliant 
on the physician’s skill and experience, and is inherently 
limited by the human threshold of audibility in perceiving 
sounds of only certain magnitude and bandwidth [1]. Also, 
with traditional stethoscopes, recording sound data for future 
reference is not possible. 

Advances in objective heart sound analysis using 
electronic recordings are crucial, as more than 5 million 
people in the U.S. are diagnosed with heart valve disease 
every year [2]. With an aging population, acquired structural 
heart disease, which includes diseases such as calcific aortic 
valve stenosis and mitral regurgitation, is now the third most 
common cardiovascular disease in the country [3]. In fact, 
there are now about 1.5 million adult patients with aortic 
stenosis in the U.S. [4]. Also, congenital heart disease, the 
most common condition involving structural heart defects at 
birth, affects more than 71,000 children in the U.S. and 
European Union every year [5]–[7]. Effective medical 

management and planning of surgical treatment for structural 
or congenital heart disease may necessitate objective and 
reliable monitoring of various functions of the heart, including 
heart sounds.  

With the advent of digital stethoscopes [8], [9], clinicians 
are now able to record heart sounds as digital waveforms and 
examine them visually, beyond relying solely on the human 
perception of sound. The heart sound signals, known as 
phonocardiograms (PCG), are recorded by microphones 
typically placed at one of the common heart auscultation sites 
including the aortic, pulmonic, tricuspid, and mitral areas on 
the chest [10]. The PCG recordings are mainly comprised of 
the fundamental heart sounds, S1 and S2, commonly referred 
to as “lub” and “dub” sounds, respectively. In addition to these 
normal heart sounds, relatively weak S3 and S4 heart sounds 
in individuals at risk of heart failure, and other abnormal 
sounds such as opening snaps, ejection sounds, murmurs, and 
mid-systolic clicks, may also be present [10]–[13]. The 
application of digital signal processing and machine learning 
techniques to these PCG signals can overcome the limitations 
of manual auscultation for effective clinical diagnosis using 
heart sounds. However, automated classification of heart  
sounds is not trivial as PCGs can be obscured by background 
noise, breathing sounds, intestinal sounds, and sensor motion 
against the body [10]. Continuous monitoring of heart sounds 
using novel wearable medical device sensors with 
sophisticated algorithms may emerge for screening or 
diagnosing abnormal heart conditions/defects that would 
allow for early and appropriate medical intervention. 

Automated classification of heart sound pathologies has 
been evolving over the last decade using various feature 
extractions involving signal amplitudes, frequencies, 
wavelets, time-frequency spectral measures, and statistical 
methods in conjunction with classifier methods such as 
support vector machines (SVM), artificial neural networks, 
hidden Markov models (HMM), and clustering approaches. 
Furthermore, segmentation methods based on envelopes, 
features, machine learning and HMM have also been used to 
locate S1, systolic, S2 and diastolic states of each cardiac cycle 
and subsequently classify the heart sounds using localized 
features from these segments. However, accurate heart sound 
segmentation and classification into normal versus abnormal 
classes using PCG signals recorded in hospital or in-home 
environments remains a challenge [10].  

Auditory filter models are designed to imitate the way the 
human ear filters sound by using an array of independent 
bandpass filters to effectively recognize sound signals, and 
thereby discriminates between sounds more closely at low 
frequencies than at high frequencies. This ability to discern 
changes more closely at low frequencies is a useful feature for 
PCG analysis, since the spectral power of most heart sounds 
primarily occur at low frequencies, particularly under 200 Hz 
[14]. While auditory filter models are successfully applied in 
speech analysis [15], they are relatively unexplored in heart 



sound classification. Previous studies involving auditory filter 
models for PCG analysis include noise detection [16] and 
assessment of the patent ductus arteriosis [17].  

The feasibility of applying auditory filter models for 
classification of heart sounds is explored in this study. More 
specifically, the heart sounds are segmented using an HMM-
based approach into the four heart stages (S1, systole, S2, 
diastole) for each heartbeat contained in a PCG recording of 
arbitrary duration. For each heart stage, gammatone frequency 
cepstral coefficients (GFCC) are extracted as features using 
the gammatone filterbank, mimicking the impulse response of 
the auditory nerve [18]. PCG recordings are then classified as 
normal or abnormal using an SVM. Finally, the classification 
performances of the proposed GFCC method are studied, and 
compared with conventional features. The rest of the paper is 
organized as follows. Section II describes details about the 
PCG database and the proposed method, which involves heart 
sound segmentation, GFCC feature extraction, classification, 
and performance analysis. Section III provides the 
performance results of the proposed approaches, and in 
Section IV, the implications of the present work are discussed. 

II. MATERIALS AND METHODS 

A. Heart sound database 

Automated classification of PCG recordings has been 
extensively studied to aid the clinical assessment of 
pathological cardiac conditions. The literature on this topic 
has wide coverage relying on classical feature extractions 
including time domain, frequency domain, and wavelet 
methods [10]. Recently, to facilitate development of clinical 
grade algorithms for classifying heart sounds, the 2016 
PhysioNet Computing in Cardiology Challenge provided a 
substantially large standardized database by aggregating 
recordings from multiple smaller databases collected 
independently in both clinical and non-clinical settings [10]. 
The training data contains 3,240 PCG recordings generally 
recorded at four common locations on the chest: the aortic 
area, the pulmonic area, the tricuspid area, and the mitral area. 
Each recording in the database is annotated as “normal” or 
“abnormal” by experts. The database contains 665 abnormal 
records, which are mostly from patients with heart valve 
defects such as mitral valve prolapse, mitral regurgitation, 
aortic regurgitation, aortic stenosis, and valvular surgery or 
coronary artery disease [10]. This PCG database from the 
2016 PhysioNet Challenge was utilized in this paper to 
validate the proposed method. 

Briefly, the proposed algorithm for classifying heart 
sounds of arbitrary duration into normal and abnormal classes 
involves preprocessing the PCG signal to extract the spectral 
contents of interest, segmenting heart sounds into the different 
phases of the cardiac cycle, extracting features using the 
auditory filter model, and training prediction models using a 
weighted SVM with radial basis function (RBF) kernel. 
Subsequent sections provide a step-by-step detailed 
description of the algorithmic processes.  

B. PCG preprocessing and segmentation 

 The PCG signals, which originally have a 2000 Hz 

sampling rate, are filtered using a 2𝑛𝑑  order Butterworth 
bandpass filter between 25 and 400 Hz, and resampled 
uniformly at 1000 Hz. The preprocessed signals are then 
segmented using an HMM-based algorithm into the four 
phases of the heart cycle, namely S1 (first heart sound), 

systole, S2 (the second heart sound) and diastole, as a 
sequence. Accurate delineation of heart sounds into the four 
phases of the heart cycle is highly useful for extracting 
physiologically relevant features from PCG recordings [9].  

An HMM-based method proposed by Schmidt et al. [19] 
that explicitly incorporates the expected duration of heart 
phases in the model is employed for the segmentation of each 
cardiac cycle. Schmidt et al. [19] generate a Gaussian 
distribution for the expected duration of each of the four 
cardiac cycle stages using the average duration of the heart 
sounds as well as autocorrelation analysis of systolic and 
diastolic durations. Then, using annotated data labeled by 
experts, the model is trained to derive the emission 
probabilities of the HMM. Specifically, the true states 𝑄 =
 {𝑞1, 𝑞2, . . . , 𝑞𝑡} are unknown, but the observed sequence 𝑂 is 
known. Therefore, the HMM-based segmentation method is 
tasked with finding the state sequence that is most likely to 
produce the observed state [19]: 

 𝑄∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄  𝑃(𝑄|𝑂, 𝜆) (1) 
 

where 𝑄∗  is the state sequence that is most likely to 
produce 𝑂 , the observed state sequence, and 𝜆  denotes the 
model parameters such as the HMM’s transition matrix and 
the cardiac cycle duration distribution. Inclusion of expected 
durations as prior information resulted in a sensitivity of 
99.3% and a positive predictive value of 99.1%, when tested 
on a population of 60 patients for a total of 744 S1 and S2 
occurrences [19].  

C. Auditory filter model 

 Advances in the understanding of cochlear nonlinearities 
and the physiology of hearing have led to the development of 
auditory filters [18]. With the goal of imitating the human ear 
to help with this binary classification problem, a gammatone 
filter is implemented using an impulse response, ℎ(𝑡), given 
by the product of a gamma distribution and sinusoidal tone as 

 ℎ(𝑡) = 𝑎𝑡𝑛−1𝑒−2𝜋𝑏𝑡𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡 + 𝜙) (2) 
 

where 𝑓𝑐 is the center frequency in Hz, 𝜙 is the phase of 
the carrier in radians, 𝑎 is the amplitude gain, 𝑛 is the order of 
the filter, 𝑏 is the filter bandwidth in Hz, and 𝑡 is the time in 
seconds. An array of overlapping gammatone filters are 
organized into a filterbank to mimic the human auditory 
system. 

 

Figure 1. Frequency response of a 12–channel gammatone filterbank. 

We developed an 𝑀 − channel filterbank based on 
Slaney’s implementation of the gammatone filterbank [20]. A 

4𝑡ℎ order gammatone filter is used currently to simulate the 



auditory response.  The filters are spaced on the equivalent 
rectangular bandwidth (ERB) scale, which places them closer 
together at low frequencies and farther apart at high 
frequencies, with each filter representing a single frequency 
sub-band of the original signal. The bandwidth, b, of the 
gammatone filter is given by 𝑏 = 1.019 ∗ 𝐸𝑅𝐵(𝑓𝑐) , where 
𝐸𝑅𝐵(𝑓) = 24.7 + 0.108𝑓 . The center frequency, 𝑓𝑐  for a 
channel 𝑚 is given by 

 
𝑓𝑐(𝑚) = (𝑓ℎ + 𝐾)𝑒

𝑚
𝑀

 𝑙𝑜𝑔(
𝑓𝑙+𝐾
𝑓ℎ+𝐾

)
− 𝐾 

(3) 

 
where 1 ≤ 𝑚 ≤ 𝑀, 𝑀 is the total number of channels, 𝐾 =
228.83 , and 𝑓𝑙  and 𝑓ℎ  are the lowest and highest cutoff 
frequencies of the filterbank, respectively.  

 Figure 1 shows the frequency response of a 12-channel 
gammatone filterbank based on Slaney’s implementation [20]. 
Next, gammatone filterbanks and cepstral coefficients are 
combined to compute GFCCs that are related to the spectral 
envelope on a perceptual auditory scale. 

D. Feature extraction 

The steps involved in the extraction of GFCCs are as 
follows. First, the PCG signal, 𝑥𝑖(𝑛), is divided into 𝑖 frames 
of 25ms duration with 40 percent overlap, assuming the audio 
frequencies are relatively stationary on these time frames. A 
Hanning window, 𝑤(𝑛), of length N is also applied to reduce 
the spectral leakage, as given below. Secondly, the power 
spectrum in each frame, 𝑃𝑖(𝑘), is calculated to estimate the 
amount of energy at different frequencies within the signal, 
similar to the functioning of the cochlea.  

 

𝑃𝑖(𝑘) =
1
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|
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(4) 

 

where 𝑤(𝑛) = 0.5 − 0.5 cos (
2𝜋𝑛

𝑁−1
)  and 𝑘 𝜖 [0, 𝑁 − 1] . 

Thirdly, an 𝑀 − channel gammatone filterbank ℎ(𝑚, 𝑘)  is 
applied to the power spectral estimates. Taking the logarithm 
of the calculated sum of the energy within each gammatone 
filter in the filterbank, as given below, further distinguishes 
closely spaced frequencies, similarly to the way that the 
human auditory system perceives sounds.  

 

𝑔𝑖,𝑚 = 𝑙𝑜𝑔 (∑ ℎ(𝑚, 𝑘)𝑃𝑖(𝑘)

𝑁−1

𝑘=0

) 

 

(5) 

 
Finally, the discrete cosine transform (DCT) is applied to 
decorrelate the logarithm of the filterbank energies, and to 

obtain the coefficients 𝑐𝑖,𝑗 corresponding to the 𝑗𝑡ℎ GFCC for 

the 𝑖𝑡ℎ frame.  
 

𝑐𝑖,𝑗 = ∑ 𝑔𝑖,𝑚𝑐𝑜𝑠 (
𝜋𝑗(2𝑚 − 1)

2𝑀
)

𝑀

𝑚=1

 

 

(6) 

 
Currently, features are extracted using the above GFCC 

method for two independent classification approaches: (i) 
with PCG segmentation and (ii) without PCG segmentation. 
In the case with PCG segmentation, the feature vector is 
calculated by applying statistical measures on each GFCC 
coefficient across the frames of each of the four heart cycle 
phases, as segmented by the HMM-based algorithm. The total 
number of features computed with heart sound segmentation 
is equal to 𝑛𝑐 ∗ 𝑛𝑝 ∗ 𝑛𝑠 where 𝑛𝑐 is the number of extracted 

coefficients, 𝑛𝑝  is the number of phases of the segmented 

heart cycle (currently, 𝑛𝑝 = 4 ), and 𝑛𝑠  is the number of 

statistical measures used. On the other hand, the feature vector 
without PCG segmentation is calculated by applying 
statistical measures on each GFCC coefficient across all 
frames, and the total number of features is equal to 𝑛𝑐 ∗ 𝑛𝑠. 
The statistical measures used to obtain the feature vector 
include the mean, standard deviation, or a combination of 
both, so 𝑛𝑠 is typically 1 or 2. 

E. Classifier 

Training is performed independently using the feature 
vectors extracted for with and without segmentation 
approaches using various classification methods including 
logistic regression, SVM and gradient boosting.  Based on 10-
fold stratified cross-validation, the best performance is 
obtained using a weighted SVM classifier with a RBF kernel, 

defined by 𝑒(−𝛾|𝑋𝑖−𝑋𝑗|
2

), for both cases of feature extraction. 
The hyperparameters of the classifier including the 
misclassification penalty, 𝐶, and the kernel coefficient for the 
RBF kernel, 𝛾, are optimized as described in the next section. 

The weighted SVM [21] addresses the imbalance between 
normal and abnormal heart sound recordings in the dataset 
with the cost function for a set of weights, 𝑤 defined as  

𝐿(𝑤) =  
‖𝑤‖2

2
+ 𝐶+ ( ∑ 𝜉𝑖

𝑁

𝑖: 𝑦𝑖 =+1

) + 𝐶− ( ∑ 𝜉𝑖

𝑁

𝑖: 𝑦𝑖 =−1

) 

 

(7) 

 
where 𝐶+ and 𝐶− are the regularization or penalty terms for 
the abnormal and normal heart sound classes, respectively. 

The weighted classes 𝐶𝑗  are obtained by 𝐶𝑗 = 𝐶 ∗ (
𝑛

𝑘𝑛𝑗
) , 

where 𝑛 is the total number of heart sound observations, 𝑘 is 
the number of classes, and 𝑛𝑗 is the number of observations 

in class 𝑗 . Using different penalty terms for normal and 
abnormal classes addresses the class imbalance by applying 
a higher penalty for misclassifying an abnormal recording. 

F. Hyperparameter optimization and data analysis 

The hyperparameters for the feature extraction and 
classifier such as C, 𝛾, 𝑀 (the number of channels), and the 
subset of the coefficients 𝑐𝑖,𝑗  are optimized by maximizing the 

average of sensitivity (the probability of correctly identifying 
an abnormal case) and specificity (the probability of correctly 
identifying a normal case). While it is common in speech 
signal processing to use more than 20 channels and the first 10 
coefficients of the gammatone filterbank [22], we determined 
no substantial improvement in the classification performance 
beyond 10 channels during optimization. Hence, 𝑀 and the 
subset of 𝑐𝑖,𝑗 are optimized on a 2D grid of 10 channels x 10 

coefficients independently for different combinations of 
statistical measures. The performances of the proposed 
method are assessed using a feature vector size of 80 (𝑛𝑐 =
10, 𝑛𝑝 = 4, 𝑛𝑠 = 2) and 20 (𝑛𝑐 = 10, 𝑛𝑠 = 2) for “with” and 

“without” segmentation, respectively. The classifier 
hyperparameters are optimized initially using a coarse grid 
search as recommended in [23] and then fine-tuned on 
𝐶 𝜖 [20, 24] and 𝛾 𝜖 [2−4, 20]. 

The classification performance is independently evaluated 
for the “with” and “without” segmentation approaches using 
specificity and sensitivity, based on 10-fold stratified cross-
validation. The trade-off between specificity and sensitivity 
for “with” and “without” segmentation methods are also 



assessed using ROC curves, computed using Platt’s posterior 
class probabilities [24].  

G. Performance assessments from comparative studies 

Performance assessments using various conventional 
features are further carried out per the previous studies in the 
literature for comparisons of the current GFCC-based method. 
Specifically, four categories of features are selected for 
comparative assessments: time-domain features, frequency-
domain features, a combination of wavelet and entropy-based 
features, and mel-frequency cepstral coefficients (MFCC). A 
total of 36 time-domain features as proposed by Potes et al. 
[25] were used in the analysis. These include the lengths of 
intervals such as S1, systole, S2 and diastole intervals. They 
also include amplitude-based measurements such as the ratio 
of the absolute amplitude during systole to that of the S1 
period in each heartbeat, and the skewness and kurtosis of 
amplitudes during each of the four heart phases. A total of 60 
frequency-domain features were extracted including 36 
features that correspond to the power spectrum across 9 
frequency bands during the 4 phases of heart cycle as 
proposed by Potes et al. [25], 9 features based on linear 
predictive coefficients and power spectral density as proposed 
by Zabihi et al. [26], and 15 features based on standard 
deviations, skewness, and kurtosis of periodograms in five 
equally spaced frequency frames as proposed by Kay et al. 
[27]. A total of 246 wavelet and entropy-based features were 
used, including 220 features based on the continuous wavelet 
transform (CWT) [27], 4 features based on the coefficients of 
the discrete wavelet transform (DWT) [26], 20 features based 
on spectral entropy [27], and 2 features based on Natural and 
Tsallis entropy [26]. Furthermore, MFCCs are calculated 
using the mel-frequency filterbank with the same number of 
channels and coefficients as the gammatone filterbank. To 
facilitate comparisons, the weighted SVM is trained and 
optimized independently for different categories of features 
outlined above. 

III. RESULTS 

Figure 2 shows an example of a PCG signal from the 
database segmented into four cardiac cycle stages: S1, systole 
(Sys), S2, and diastole (Dia). The gammatone spectrogram 
shows the distribution of the signal energy across different 
frequency sub-bands that are transformed into GFCC features 
for further classification analysis. 

 

Figure 2. Example of heart sound segmentation and gammatone 
spectral representation. 
 

A. Classification performance with PCG segmentation 

Figure 3 demonstrates the binary classifier performance as 
a function of the number of filters in the gammatone 
filterbank, and the number of coefficients (GFCCs) calculated 
from the PCG recordings. As the number of coefficients 
increases, performance also increases drastically up to the first 
4 coefficients. Thereafter, the performance plateaus and does 
not result in substantial improvement with further inclusion of 
additional coefficients or filters. A feature set of 16, 
corresponding to the first 4 coefficients from each heart phase 
averaged across frames using an 8-channel filterbank, and 
setting 𝐶 = 2  and 𝛾 = 0.1  in the SVM, offered the best 
performance of 90.3% sensitivity and 89.9% specificity. 

 
Figure 3. The binary PCG classifier performance versus the 
number of channels (filters) and coefficients of the gammatone 
filterbank. 

B. Classification performance without PCG segmentation 

Similarly, the performance of the proposed method 
without segmentation offered a performance of 87.1% 
sensitivity and 88.5% specificity with 16 features 
corresponding to the mean and standard deviation of the eight 
coefficients across the frames in an 8-channel gammatone 
filterbank, using 𝐶 = 2 and 𝛾 = 0.2 in the SVM. Thus, the 
performance with segmentation is slightly better than the 
results without segmentation, as shown in the ROC curve 
below (Figure 4), which suggests that the features extracted 
with segmentation may outperform with relatively better 
predictive power. The area under the ROC curve (AUC) of the 
“with” segmentation approach is 0.96 as compared to 0.94 
without segmentation, suggesting that segmentation of cardiac 
cycles is helpful for accurate classification of normal vs. 
abnormal heart sounds. 

 

Figure 4. ROC curves for the “with” and “without” segmentation 
methods. 



C. Comparison with conventional features 

The 36 time-domain features resulted in a specificity and 
sensitivity of 79.3% and 77.4%, respectively. While time-
domain features are relatively sensitive to noise, frequency- 
domain and wavelet/entropy features provide comparatively 
better results. The 60 frequency-domain features yielded a 
specificity and sensitivity of 82.7% and 85.9%, respectively. 
The 243 wavelet and entropy features yielded 83.3% 
specificity and 83.9% sensitivity. On the other hand, 16 
MFCC features resulted in comparable performance of 87.9% 
specificity and 90.7% sensitivity, and 88.8% specificity and 
87.4% sensitivity, respectively for “with” and “without” 
segmentation. The results reveal that the GFCC-based features 
relatively outperform the classical features for the 
classification of normal vs. abnormal heart sounds as 
summarized in Table I. 

TABLE I.  CLASSIFICATION PERFORMANCES BY FEATURE CATEGORY 

Feature category Number of 

features 
Performance results 

Specificity Sensitivity 

Proposed  16 89.9% 90.3% 

Time domain 36 79.3% 77.4% 

Frequency domain 60 82.7%  85.9% 

Wavelet and Entropy 243 83.3%  83.9% 

MFCC  16 87.9% 90.7% 

 

IV. DISCUSSION 

Screening of patients may allow for detection of structural 
heart disease at early stages. This provides more time for 
planning treatments and analyzing management options, and 
enables clinicians to perform timely medical intervention, 
thereby preventing adverse cardiac events and ultimately 
leading to better health outcomes. The proposed algorithm 
demonstrates clinically acceptable performance for 
identifying normal and abnormal heart sounds, indicating that 
an automated algorithmic solution can be useful for clinical 
heart sound analysis. 

Traditional diagnostic screening primarily involves 
manual spot check examinations of heart sounds using a 
stethoscope, followed by other standard clinical diagnostic 
tests such as chest X-rays and echocardiograms. Manual 
auscultation relies on subjective assessments through a 
“process of elimination” that the doctor carries out by 
sequentially listening to sounds from different heart valves 
[1]. Most of the fundamental heart sounds begin at 3 
cycles/sec and peak at 20 cycles/sec, with the weaker 
abnormal heart sounds such as S3 and S4 falling below the 
audible range of the ear, which starts at about 20 cycles/sec 
[1]. The inherent limitations in manual assessments reveal the 
necessity for an automated system such as the current 
algorithm that can augment clinical decision-making by 
objectively analyzing heart sounds.  

The proposed algorithmic solution achieves good 
performance per its validation using the 2016 PhysioNet heart 
sound database. It is worthwhile to note that the sound 
recordings of this database are collected in uncontrolled 
environments and are corrupted by various noise sources such 
as speech, barking of dogs, stethoscope motion, breathing and 
intestinal activity [10]. In this context, the present 

performance results are encouraging and support successful 
deployment in real-world settings. 

Although a number of methods based on envelopes, 
machine learning, amplitude, and frequency features [10] 
have been proposed in the literature for segmentation of 
cardiac cycles, the HMM is most effective and suitable due to 
the assumption of a double stochastic process, in which the 
heart cycle is the hidden Markov process and the heart sounds 
are the observable stochastic outputs [19]. However, it is to be 
noted that the study group for Schmidt et al. [19] did not 
include patients with heart valve disease. Therefore, further 
refinements to the segmentation method that can ensure clear 
separation between fundamental and abnormal heart sounds in 
patients with heart valve abnormalities might improve the 
overall classification performance.  

The cross-validation results indicate that the specificity 
and sensitivity of the binary classifier with heart sound 
segmentation are relatively higher than the performance 
without segmentation. The best performance is obtained using 
just four GFCC coefficients per heart phase, a smaller feature 
set that can reduce computational cost, time and data storage 
requirements. It is worth mentioning that eliminating the 
segmentation from the algorithmic process further reduces the 
computation time substantially. Given the relatively close 
performance between the two approaches, further 
investigations may be warranted to study the trade-off 
between performance and computational cost for real-time 
implementation of the algorithm. 

Performance analyses from the comparative literature 
studies further show that GFCC-based features possess more 
predictive power for classification of normal vs. abnormal 
heart sounds than the conventional time domain, frequency 
domain, wavelet and entropy features. Substituting 
gammatone filterbanks for mel-frequency filterbanks seems to 
yield relatively comparable performance. However, GFCCs 
are intrinsically robust to noise as compared to MFCCs, which 
has been demonstrated with speaker identification [22]. 
Moreover, tuning the noise robustness of GFCCs for heart 
sound classification is an open topic, and needs to be explored 
further. While the present algorithm exclusively uses GFCC-
based features to determine its feasibility for classifying heart 
sounds signals, future work may aggregate the other feature 
categories listed in Table I, and investigate any potential 
improvements in performance.   

Another potential path for further research could be to 
incorporate GFCCs into deep learning algorithms. For 
example, GFCC heat maps could be created and converted 
into images, and fed to a neural network for classification [28]. 
As healthcare applications require high levels of transparency 
and rationales in their decision making, it could be challenging 
for deep learning approaches, mostly regarded as black-box 
models, to get the essential clinical acceptance, which is an 
issue that may require some consideration [29].  

Forty-eight research teams participated in the PhysioNet 
Computing in Cardiology Challenge and the top entry had a 
specificity and sensitivity of 77.81% and 94.24%, 
respectively, on a blind test set. While the public does not have 
access to the blind test set, the cross-validation results of the 
proposed algorithm using the available training data are 
comparable to the performances reported from the challenge.  

In this paper, optimization of the algorithm is performed 
by using the average of sensitivity and specificity as the 



cost/scoring function, in order to maintain a balance between 
those two measures. However, balancing the tradeoff between 
sensitivity and specificity for practical use cases needs to take 
the desired outcomes, associated costs, and prevalence of the 
disease condition into account. Sometimes, it might be 
desirable to have high sensitivity at the expense of relatively 
lower specificity, which would increase the probability of 
identifying true positives at the cost of increased false 
positives. In other situations, however, this might not be 
preferable, because the false positives may lead to false 
alarms, unnecessary expensive tests, and even psychological 
burden in certain patients. Selecting an appropriate cost 
function and decision making in such scenarios might also 
depend on the availability of medical infrastructure, funding 
for additional tests, and the well-being of the patient. The 
predictive model could be optimized appropriately to meet the 
specific goals and patient needs. Furthermore, the proposed 
method can be easily integrated into clinical decision support 
systems for assisting technicians and physicians at the point of 
care testing, which can be beneficial for patients as well as the 
healthcare system. 

V. CONCLUSION 

Automated heart sound analysis allows for non-invasive 
screening of structural and functional heart abnormalities. The 
present study proposes a supervised machine learning 
algorithm for effective and automated identification of normal 
vs. abnormal heart sound signals, using unique GFCC features 
that mimic the human auditory system. The performance of 
the proposed algorithm demonstrates clinically acceptable 
performance of ~90% for both sensitivity and specificity using 
10-fold cross-validation on the 2016 PhysioNet heart sound 
database, while outperforming a number of other predictive 
models with traditional feature sets. Thus, the proposed 
algorithm can be a useful diagnostic tool in clinical settings to 
help screen for patients with structural and functional 
abnormalities in the heart. 
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